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Abstract. The simultaneous localization and mapping problem with
evolutionary computations is translated to a multi-objective optimization
problem since it possesses of characters of multi-objective at a certain extent,
and in order to efficiently solve the simultaneous localization and mapping
problem, a local searcher with immunity is constructed. The local searcher
employs domain knowledge, which is named as key point grid which is
developed in the paper. The experiment results of a real mobile robot indicate
that the computational expensiveness of designed algorithms is less than
evolutionary algorithms of single-objection for simultaneous localization and
map-ping and accuracy of obtained maps are better.

1 Introduction

SLAM (Simultaneous Localization And Mapping or Concurrent Mapping and
Localization) is to acquire a map of an unknown environment with a moving robot,
while simultaneously localizing the robot relative to this map[1-2]. The SLAM
problem addresses situations where the robot lacks a global positioning sensor, and
instead has to rely on sensors of incremental ego-motion for robot position estimation
(e.g., odometry, inertial navigation. etc.). Such sensors accumulate error over time,
making the problem of acquiring an accurate map into a challenging one. This is a
hard problem because noisy sensor data must be simultaneously used for both
mapping and localization. Within mobile robotics, the SLAM problem is often
referred to as one of the most challenging ones™ .

Traditional algorithms are based on extended Kalman filters (EKFs) [5-6].
However, several problems arise when applying the Extended Kalman Filter
approach. Especially, this method is not able to deal with uncertainty as follows: the
combinatorial labeling problem of data association (e.g., landmark identification,
feature recognition and place recognition, etc.) in which a correspondence must be
found between sensor measurements and the features already represented in the map.

In order to overcome the difficulty about the data association problem, Reference
[7] and [8] employed evolutionary computations to solve SLAM problem. Their
investigations indicate that evolutionary computations is a hopeful approach for NP-
hard SLAM problem.
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In SLAM occupancy grid present by Moravec and Elfes[9] often is employed,
where a map is consisted of grids or cells. A occupancy grid is described as grid[i][j],
and every grid[i][j] has a probability or belief occ[i][j] which is occupied and a
probability or belief emp[i][j] which is free. The calculations of occ[i][j] and emp[i][j]
depended on data from range-finder. Usually, since the reliable degree of data from
range-finder is relevant to the distance. The reliable degree of data from range-finder
is projected to occ[i][j] and emp[i][j] by means of a sensor fusion approach like
theories of evidence. In this paper Dempster-Shafer theory of evidence is employed
and works as a sensor fusion.

SLAM possesses of characters of multi-objective at a certain extent since several
formulations are combined with weights and the fitness is defined. From Reference
[8], we can get that the target of evolutionary computations for SLAM is to solve
multi-objective problem(MOP) as follow.

The reliable degree of data from range-finder is projected to occ[i][j] and empl[i][j]
by means of Dempster-Shafer theory of evidence. So, the overall consistency of the
sensory information contained in the grid-map, which is one target to be optimal, is
described as follows:

1 = 2Xmin(1-occ[i][j], 1-emp[i][j]). (1)

The other objectives are to reward the algorithm for producing smaller, more
compact maps:
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Objectives or of combining them together as a weighted, linear sum, is the method
used in Reference [7] and [8]. This method, as is so often done, will lead bad
solutions to since choice of weights is crucial and is difficult to be determined. Even a
large change in the weights of a weighted sum scalarization would result in finding a
bad solution.

The weighted sum is only one possible method in this family of scalarizing
methods and has some serious drawbacks. One of others is to consider alternately one
objective function then another; and there are various ways this could be organized.
Another approach is to use some form of relative ranking of solutions in terms of
Pareto dominance. The latter is the most favoured approach in the EA community
because it naturally suits population-based algorithms and avoids the necessity of
specifying weights, normalizing objectives, and setting reference points.

Mikkel and Jensen[10] used the flowtimes of the individual jobs Fi to build helper-
objectives, and optimize the primary objective. The helper-objective simultaneously
will be equivalent to simply optimizing the primary objective. Knowles and
Corne[11] defined additional objectives with arbitrary sub-tours for travelling
salesman problem, and local optima in single-objective optimization problems can be
removed. These results enlighten that multi-objective methods can guide the search
and deal with sources of difficulty in single-objective optimization. Their
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investigations also show that the performance of algorithm depends on whether
dominant knowledge in problems is used efficiently.

2 Key Point Grid and Its Detection

Sensors like sonar and laser scan, grabbing range-finder data, provide environment
information around the robot. From the information the local map can be constructed
and a local path for robot can be planned. If there is some structure information like
lines in environments, the structure information is used to building a global map more
efficiently and exactly. Considering a situation showing as Fig. 1 in which range-
finder data for a laser scanner are simulated, it is can seen that a large gap of range-
finder data occurred at some point and on left side of which long scan radial line, and
on the right side short scan radial line occurred. Furthermore, all long scan radial line
forms a continuous sector. We call the occupancy grid that is located by gap point as

key-point grid.
| L

Figurel. Simulations of range- finder data at a key point grid

Fig.2 shows a key point grid in a running for a real robot in our experiment room.
Local occupancy/empty grids were calculated by grid range-finder data, so the map in
Fig 1 is local where the cells with black are the edges of obstacles calculated from
range-finder data gotten from the robot. The ones with white are free of obstacles and
gray cells are unknown. It is remarked that these colors in other figures are the same
meaning in this paper. On the right side in Fig 1, a large gap in range-finder data
occurred, since the obstacle goes to the end. Although range-finder data are not
continuous, there is no key point grid since varying scopes of range data are not
enough.

In the opinion of the geometry, the concept of key point grid comes form the
convex point in polygon obstacle. When the robot samples near a convex point in
polygon obstacle, largely discontinuous gap in range-finder data will happen. Because
of noise, largely discontinuous gap that is founded haphazard in range-finder data
doses not always mean that a key point grid occurs. Therefore, a method for
eliminates false key point grid is needed. In this paper if a grid is a candidate key
point grid, the grid will be scanning for many times and a key point grid will be
determined by means of Dempster-Shafer theory of evidence.
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Figure 2. A possible key point grid is found by a real robot

@ _ A robot, Bl — Obstacles,  — Unknown area, Space —Obstacle-free area

In the implementation of determining key point grid, when a large gap in range-
finder data occurs, the grid which the gap belongs to is consider as a candidate key
point grid and the robot samples and takes range-finder data for 3-4 times while it
move in a curved path. In Fig. 3 it is showed that a real robot sampled at some key
point grid in moving along a curved path. If there is really a key point grid, the grid is
marked as K,=[xl.b 5 yf’ ], where xib , yf’ are coordinates of the grid assigned by the
map under global coordinate system. Since K; depends on the robot’s own
measurements of its trajectory, these measurements will be corrupted by noise.
Hence, real coordinates of Ki can be described as follows:

X=X HAX,. y, =Y HA Y, @)

where Ax; ,Ay; =0, +1.

The following algorithm provides a method of finding a key point from range-
finder data.

(1) Let range-finder data is a set of {(r;,¢; )} in the local coordinate system. (v;,¢;)
is coordinates under the polar coordinates. In general the polar coordinates (r,,¢;) can
be translated to the Cartesian coordinates p;(x;, y; ) by a simple coordinate
transformation:

X, =7, COS @,
{ (6))

Y =181 @;

(2) Letaset A1 ={ p, }. The set 4, is called as a successive section. Let i=2, j=1;
(3) If the point pi in range-finder data satisfies the condition as follows:

12 =Pl
min(([} p; [.I 2 1)

< 5Key (6)
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Figure 3. Trajectories and two key point grids.
®— Trajectories, 0 — Key point grids, Ml — Obstacles,
— Unknown area, Space — Obstacle-free area

pi s inserted into successive section 4;. Else, a new successive section 4.1, j=j +1,
is created, and let i=i+1;

(4) The step (3) is repeated until range-finder data is empty.

(5) If the size of successive section 4; is less than 10, this successive section 4; will
be deleted.

(6) Let all successive sections can be described as follows:

O, ={(x; 1 V)N (X3 Yin ) si=1.2,00N,, @)

(i) If N, =1 there is not a c. The algorithm goes to end;

(ii) If N, =2, the last point p; p(x1n, ¥1,x) in O is a key point. The algorithm goes to
end;

(iii) If N, >2, successive section pairs {Q;, O, }( i=1,2,...,N,-2) are constructed, a
distance of {Q;, O} is defined as follows:

d(Q;, Qira)= \/(x;,zv — X2, )2 +(Viy = Vi )2 . ®)

This distance is called as successive section pair distance.

(M) If d(Qi, Oi2)> dkey, i=1,2,...,N,-2, points p; Mx;n, Yin) and (Xison, Viron) are
considered as key points.

In the implementation of the algorithm in this paper key point grids were stored in
a database, so computations of extracting key point grids from range-finder data were
carried out only once.
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3 Multi-Objective Evolutionary Algorithms with Immunity for
SLAM

3.1 Multi-Objective Algorithms (MOA) with Immunity

Multi-objective algorithms with immunity for SLAM proposed in this paper are
described as follows.

Let G and P' empty

Generate an initial population P
Calculate the fitness of each individual
repeat

(5) Let G and P' empty

(6) for j =1 to #recombinations do

(7) Select a set X ,y in PUG to be parents with
[12]

(1)
(2)
(3)
(4)

ranking-based selection
(8) Perform recombination on X ., with probability
pPr to generate X ,¢e1
(9) Perform vaccination on X ,¢r; with probability p;
(10) Perform immune selection to generate x ¢ from

X offl
(11) Replace P' with P'U {xX ¢ }
(12) endfor

(13) for j =1 to #mutations do
(14) Select x[P for mutation
(15) Perform Mutate with probability py to generate

X
(16) Perform vaccination on x' with probability p:
(17) Perform immune selection to generate x"

(18) Replace P' with P'U {x"}
(19) endfor
(20) Replace P with Select from(PUP' ) using ranking-

based selection!'?

(21) if P has converged then replace P with an initial
population P
(22) until termination condition is TRUE

In the implementation of the algorithm, both termination conditions are used.

3.2 Chromosome Encoding, Recombination and Mutation

SLAM is treated as a continuous global optimization problem where the search is
carried out in the space of possible robot trajectories. A trajectory can be defined as a
vector [T}, T, ..., Ty], where T=[ d;, 6], d; and a; are the relative distance and rotation
that are traveled by the robot in one small step j, and there are N steps in total.
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The robot's own measurements of its trajectory are used to generate candidate
solutions by applying different correction factors, which are described as follows, to
the measured values of d; and a;.

d',=d+Ad,, 0, =6:+A0, ©)

Each chromosome is encoded as a string of floating point numbers [X;< Xp<>p>>< Xy,
K< Kyeppp>e Ky, ] corresponding to the correction factors and the key point grids,
where X=[ Ad;, AG;], and DdpaxRAd R max 5 N\ Omax RAG R+-Opmax, k=1,2,500,N. dpnax

and 6, are real positive integers.

Pairs of selected strings are then combined by recombination. Recombination is
carried out with probability p.. Mutation is carried out by picking single value within
the strings with very low probability p,, and replacing those values with randomly
generated values, as upon initialization.

3.3 Vaccination Operator

A local exploration process, named as a vaccination operator, is constructed by means
of the feature of key point grid. A key point grid K; is selected uniformly, and a
trajectory 7; is found such that at 7; the robot can detect the key point grid K; by
means of laser scanner. If the point where a large gap occurs in range-finder data at 7;
does not belong to K, the correction factors Ad; applied to the distance will be
adjusted. This proccess will be performed with probability p.

3.4 Immune Selection Operator

If the correction factors A¢; and A8, applied to the angle measurements at 7; and 7},
are adjusted in the vaccination operator, an immune selection operator, which will be
described as below, will be performed.

The change of the correction factors Af; and A6, will lead to improvements of the
consistency and compactness of the map. Measure of improvements will be used to
evaluate the performance of a vaccination operator. In detail, either of both
trajectories 7; and T}, is evaluated by constructing a local occupancy map using the
recorded range-finder data of the robot along the path, and a value f; is calculated
according to formation (1) within the local occupancy map. If 7; and T}, are replaced
with 7"; and 7", as the same as above calculations, a value f'; is calculated. If /' <fj,
T; and T}y, are replaced with T"; and 7", in the individual in which the vaccination
operator has been performed, else, the operator of replacement will be done!"* with
probability exp(-(f; - f1)/In(k+1)), where k is the evolutionary generation in
evolutionary process.
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4 Implementation of the Algorithm and Experiment Results

The algorithm was tested using data recorded by an AmigoBOT mobile robot
produced by ActivMedia Robotics, LLC with the addition of a SICK laser scanner
showed at the Intelligence Control Lab of the Central South University in China. The
odometer trace was divided into segments of about from 1 to 2 meters in length and
was 0.2 meters at every key point grid. For the environment of Fig. 4, there were 26
segments corresponding to the about 30 meters traveled by the robot. Because
movable scope for robot is not large enough, all range-finder data are truncated such
that the lengths of range-finder data are less than 3 meters, which means that if >3 in
range-finder data (r;,p; ), 7=3.

In our experiments Dp,=0.32, dkey =1, dnax=20cm, Onax=10, By=1meters, integer
dy€[-20, 20], integer 6,€[-10, 10]. In implementation of the algorithm the
population size is 50, p;=0.3, pc =0.9 and py=0.08.

The algorithms proposed in this paper and in Reference [7] and [8] run 10 times
for the same test case (environment, trajectories, and range-finder data) in order to
prove that the algorithm proposed in this paper outperforms other approaches.
Running results of algorithms are list in Table 1, and a grid-map gained through the
algorithm in this paper is shown in Fig. 4, where the terminate condition is that
running generation is 300. From Table 1 it can be seen that the convergence rate is
higher than the algorithms in Reference [7]. Similar experiments were conducted for
the traditional multi-objective algorithm without vaccination operator and immune
selection operator, the results are shown in table 2, where the terminate condition is if
the best fitness values in the population are not improved in N. =20 generations, the
algorithm will go to the end, which is often the convergence critical. The table holds
one column for every algorithm. The first column reports the average total FS of the
traditional algorithm, while the remaining columns report the performance for the
multi-objective algorithm. The experiments reveal that the multi-objective algorithm
with immunity performs better than the traditional algorithm without immunity.

r P " i

..-...-i..-:".!.:_l__.,._._._

Figure 4. A grid-map was gotten with proposed algorithm when the robot ran in our
experiment Lab.
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In order to compare the accuracy of maps achieved by several algorithms, manual
build a map using stored data captured by the mobile robot.

Table 1. Comparisons of running results for two algorithms

Alorithms Mean value of Standard deviation
g best fitness values of best fitness values
MOA with immunity 510.4 22.7
MOA without immunity 697.3 30.1
Algorithm in Ref.[7] 631.8 37.5
Algorithm in Ref.[8] 582.0 29.8

Table 2. Comparisons of running results for two algorithms

Mean number of fitness

Algorithms function evaluations
MOA with immunity 2074.8
e 3893.6
immunity

In the implementation of the algorithm in this paper, computations of extracting
line segments and key point grids from range-finder data are carried out only once,
hence in a vaccination operator and an immune selection, major computation time is
spent on the computation of values f in a local grid-map that was constructed by only
both of trajectories. The average ratio of the computation time of values f; in a local
grid-map to the one in a global grid-map is about 4/N (N is the total of trajectories).
So, its computation time is more less than computation of the fitness value f in
formulation (1). To sum up, the algorithm proposed in this paper can increase the
convergence rate of SLAM based on evolutionary algorithms, and the larger the scope
is for robot to travel the higher the convergence rate of our algorithm is, since the total
of trajectories will increase.

5 Conclusions

(1) Multi-objective algorithms with immunity for SLAM have bee proposed, which
are combined with feature of key point grids in range-finder data in order to
increase the convergence rate of SLAM based on evolutionary algorithms.

(2) The feature of large gap in range-finder data at a convex vertex in polygonal
obstacle is employed, and the feature of key point grids is extracted and used to
construct a local search operator of key point grid with immunity.

(3) Experiments results showed that multi-objective evolutionary algorithms with
immunity could improve optimization for SLAM in some cases.
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