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Abstract. The simultaneous localization and mapping problem with 
evolutionary computations is translated to a multi-objective optimization 
problem since it possesses of characters of multi-objective at a certain extent, 
and in order to efficiently solve the simultaneous localization and mapping 
problem, a local searcher with immunity is constructed. The local searcher 
employs domain knowledge, which is named as key point grid which is 
developed in the paper. The experiment results of a real mobile robot indicate 
that the computational expensiveness of designed algorithms is less than 
evolutionary algorithms of single-objection for simultaneous localization and 
map-ping and accuracy of obtained maps are better. 

 

1   Introduction 

SLAM (Simultaneous Localization And Mapping or Concurrent Mapping and 
Localization) is to acquire a map of an unknown environment with a moving robot, 
while simultaneously localizing the robot relative to this map[1-2]. The SLAM 
problem addresses situations where the robot lacks a global positioning sensor, and 
instead has to rely on sensors of incremental ego-motion for robot position estimation 
(e.g., odometry, inertial navigation. etc.). Such sensors accumulate error over time, 
making the problem of acquiring an accurate map into a challenging one. This is a 
hard problem because noisy sensor data must be simultaneously used for both 
mapping and localization. Within mobile robotics, the SLAM problem is often 
referred to as one of the most challenging ones[3-4]. 

Traditional algorithms are based on extended Kalman filters (EKFs) [5-6]. 
However, several problems arise when applying the Extended Kalman Filter 
approach. Especially, this method is not able to deal with uncertainty as follows: the 
combinatorial labeling problem of data association (e.g., landmark identification, 
feature recognition and place recognition, etc.) in which a correspondence must be 
found between sensor measurements and the features already represented in the map.  

In order to overcome the difficulty about the data association problem, Reference 
[7] and [8] employed evolutionary computations to solve SLAM problem. Their 
investigations indicate that evolutionary computations is a hopeful approach for NP-
hard SLAM problem. 
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In SLAM occupancy grid present by Moravec and Elfes[9] often is employed, 
where a map is consisted of grids or cells. A occupancy grid is described as grid[i][j], 
and every grid[i][j] has a probability or belief occ[i][j] which is occupied and a 
probability or belief emp[i][j] which is free. The calculations of occ[i][j] and emp[i][j] 
depended on data from range-finder. Usually, since the reliable degree of data from 
range-finder is relevant to the distance. The reliable degree of data from range-finder 
is projected to occ[i][j] and emp[i][j] by means of a sensor fusion approach like 
theories of evidence. In this paper Dempster-Shafer theory of evidence is employed 
and works as a sensor fusion. 

SLAM possesses of characters of multi-objective at a certain extent since several 
formulations are combined with weights and the fitness is defined. From Reference 
[8], we can get that the target of evolutionary computations for SLAM is to solve 
multi-objective problem(MOP) as follow. 

The reliable degree of data from range-finder is projected to occ[i][j] and emp[i][j] 
by means of  Dempster-Shafer theory of evidence. So, the overall consistency of the 
sensory information contained in the grid-map, which is one target to be optimal, is 
described as follows: 

f1 = ∑min(1-occ[i][j], 1-emp[i][j]).                                  (1) 

The other objectives are to reward the algorithm for producing smaller, more 
compact maps: 

f2 =∑δ1(i, j),     f3 = ∑δ2(i, j), (2) 

where 
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Objectives or of combining them together as a weighted, linear sum, is the method 
used in Reference [7] and [8]. This method, as is so often done, will lead bad 
solutions to since choice of weights is crucial and is difficult to be determined. Even a 
large change in the weights of a weighted sum scalarization would result in finding a 
bad solution. 

The weighted sum is only one possible method in this family of scalarizing 
methods and has some serious drawbacks. One of others is to consider alternately one 
objective function then another; and there are various ways this could be organized. 
Another approach is to use some form of relative ranking of solutions in terms of 
Pareto dominance. The latter is the most favoured approach in the EA community 
because it naturally suits population-based algorithms and avoids the necessity of 
specifying weights, normalizing objectives, and setting reference points. 

Mikkel and Jensen[10] used the flowtimes of the individual jobs Fi to build helper-
objectives, and optimize the primary objective. The helper-objective simultaneously 
will be equivalent to simply optimizing the primary objective. Knowles and 
Corne[11] defined additional objectives with arbitrary sub-tours for travelling 
salesman problem, and local optima in single-objective optimization problems can be 
removed. These results enlighten that multi-objective methods can guide the search 
and deal with sources of difficulty in single-objective optimization. Their 
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investigations also show that the performance of algorithm depends on whether 
dominant knowledge in problems is used efficiently. 

2   Key Point Grid and Its Detection 

Sensors like sonar and laser scan, grabbing range-finder data, provide environment 
information around the robot. From the information the local map can be constructed 
and a local path for robot can be planned. If there is some structure information like 
lines in environments, the structure information is used to building a global map more 
efficiently and exactly. Considering a situation showing as Fig. 1 in which range-
finder data for a laser scanner are simulated, it is can seen that a large gap of range-
finder data occurred at some point and on left side of which long scan radial line, and 
on the right side short scan radial line occurred. Furthermore, all long scan radial line 
forms a continuous sector. We call the occupancy grid that is located by gap point as 
key-point grid. 

 

Figure1. Simulations of range- finder data at a key point grid 

Fig.2 shows a key point grid in a running for a real robot in our experiment room. 
Local occupancy/empty grids were calculated by grid range-finder data, so the map in 
Fig 1 is local where the cells with black are the edges of obstacles calculated from 
range-finder data gotten from the robot. The ones with white are free of obstacles and 
gray cells are unknown. It is remarked that these colors in other figures are the same 
meaning in this paper. On the right side in Fig 1, a large gap in range-finder data 
occurred, since the obstacle goes to the end. Although range-finder data are not 
continuous, there is no key point grid since varying scopes of range data are not 
enough. 

In the opinion of the geometry, the concept of key point grid comes form the 
convex point in polygon obstacle. When the robot samples near a convex point in 
polygon obstacle, largely discontinuous gap in range-finder data will happen. Because 
of noise, largely discontinuous gap that is founded haphazard in range-finder data 
doses not always mean that a key point grid occurs. Therefore, a method for 
eliminates false key point grid is needed. In this paper if a grid is a candidate key 
point grid, the grid will be scanning for many times and a key point grid will be 
determined by means of Dempster-Shafer theory of evidence. 
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Figure 2. A possible key point grid is found by a real robot 

 — A  robot,    — Obstacles,   — Unknown area, Space —Obstacle-free area 

In the implementation of determining key point grid, when a large gap in range-
finder data occurs, the grid which the gap belongs to is consider as a candidate key 
point grid and the robot samples and takes range-finder data for 3-4 times while it 
move in a curved path. In Fig. 3 it is showed that a real robot sampled at some key 
point grid in moving along a curved path. If there is really a key point grid, the grid is 
marked as Ki=[ b

ix , b
iy ], where b

ix , b
iy  are coordinates of the grid assigned by the 

map under global coordinate system. Since Ki depends on the robot’s own 
measurements of its trajectory, these measurements will be corrupted by noise. 
Hence, real coordinates of Ki can be described as follows: 

ix = b
ix +Δ ix , iy = b

iy +Δ iy , (4) 

where  Δxi ,Δyi =0, ±1. 

The following algorithm provides a method of finding a key point from range-
finder data. 

(1) Let range-finder data is a set of {(ri,φi )} in the local coordinate system. (ri,φi ) 
is coordinates under the polar coordinates. In general the polar coordinates (ri,φi) can 
be translated to the Cartesian coordinates pi(xi, yi ) by a simple coordinate 
transformation: 

⎩
⎨
⎧

=
=

iri

iri

ry
rx

ϕ
ϕ

sin
cos

,         (5) 

 
(2) Let a set A1 ={ p1 }. The set A1 is called as a successive section. Let i=2, j=1; 

(3) If the point pi in range-finder data satisfies the condition as follows: 
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Figure 3.  Trajectories and two key point grids. 
 — Trajectories,   — Key point grids,   — Obstacles,  

  — Unknown area, Space — Obstacle-free area 

pi is inserted into successive section Aj. Else, a new successive section Aj+1, j= j +1, 
is created, and let i=i+1; 

(4) The step (3) is repeated until range-finder data is empty. 
(5) If the size of successive section Aj is less than 10, this successive section Aj will 

be deleted. 
(6) Let all successive sections can be described as follows: 

)},(,),,{( ,,1,1, NiNiiii yxyxQ Λ= , i=1,2,...,Nq.    (7) 

 (i) If Nq =1 there is not a c. The algorithm goes to end; 
(ii) If Nq =2, the last point p1,N(x1,N, y1,N) in Q1 is a key point. The algorithm goes to 

end; 
(iii) If Nq >2, successive section pairs {Qi, Qi+2}( i=1,2,...,Nq-2) are constructed, a 

distance of {Qi, Qi+2} is defined as follows: 

d(Qi, Qi+2)=
2

1,2,
2

1,2, )()( ++ −+− iNiiNi yyxx .                      (8) 

This distance is called as successive section pair distance. 
(7) If d(Qi, Qi+2)> dKey, i=1,2,...,Nq-2, points pi,N(xi,N, yi,N) and (xi+2,N, yi+2,N) are 

considered as key points. 
In the implementation of the algorithm in this paper key point grids were stored in 

a database, so computations of extracting key point grids from range-finder data were 
carried out only once. 
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3  Multi-Objective Evolutionary Algorithms with Immunity for 
SLAM 

3.1 Multi-Objective Algorithms (MOA) with Immunity 

Multi-objective algorithms with immunity for SLAM proposed in this paper are 
described as follows. 

(1) Let G and P' empty 
(2) Generate an initial population P  
(3) Calculate the fitness of each individual  
(4) repeat  

(5) Let G and P' empty 
(6) for j =1 to #recombinations do  

(7) Select a set X par in P∪ G to be parents with 
ranking-based selection[12] 

(8) Perform recombination on X par with probability 
pR to generate x off1 

(9) Perform vaccination on x off1 with probability pI 
(10) Perform immune selection to generate x off from 

x off1 
(11) Replace P' with P'∪{x off }  

(12) endfor  
(13) for j =1 to #mutations do  

(14) Select x�P for mutation 
(15) Perform Mutate with probability pM to generate 

x' 
(16) Perform vaccination on x' with probability pI 
(17) Perform immune selection to generate x" 
(18) Replace P' with P'∪{x"} 

(19) endfor  
(20) Replace P with Select from(P∪P' ) using ranking-

based selection[12] 
(21) if P has converged then replace P with an initial 

population P  
(22) until termination condition is TRUE  

In the implementation of the algorithm, both termination conditions are used. 

3.2 Chromosome Encoding, Recombination and Mutation 

SLAM is treated as a continuous global optimization problem where the search is 
carried out in the space of possible robot trajectories. A trajectory can be defined as a 
vector [T1, T2, ..., TN], where Tj=[ dj, θj], dj and aj are the relative distance and rotation 
that are traveled by the robot in one small step j, and there are N steps in total.  
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The robot's own measurements of its trajectory are used to generate candidate 
solutions by applying different correction factors, which are described as follows, to 
the measured values of dj and aj. 

d′j =dj+Δdj, θ′j =θj+Δθj. (9) 

Each chromosome is encoded as a string of floating point numbers [X1, X2, ..., XN, 
K1, K2, ..., KNk] corresponding to the correction factors and the key point grids, 
where Xi=[ Δdj, Δθj], and �dmax< Δdk  <dmax , -θmax < Δθk <+θmax, k=1,2,...,N. dmax 

and θmax are real positive integers. 
Pairs of selected strings are then combined by recombination. Recombination is 

carried out with probability pc. Mutation is carried out by picking single value within 
the strings with very low probability pm and replacing those values with randomly 
generated values, as upon initialization. 

3.3 Vaccination Operator 

A local exploration process, named as a vaccination operator, is constructed by means 
of the feature of key point grid. A key point grid Ki is selected uniformly, and a 
trajectory Tj is found such that at Tj the robot can detect the key point grid Ki by 
means of laser scanner. If the point where a large gap occurs in range-finder data at Tj 
does not belong to Ki, the correction factors Δdj applied to the distance will be 
adjusted. This proccess will be performed with probability pI. 

3.4 Immune Selection Operator 

If the correction factors Δθj and Δθj+1 applied to the angle measurements at Tj and Tj+1 
are adjusted in the vaccination operator, an immune selection operator, which will be 
described as below, will be performed.  

The change of the correction factors Δθj and Δθj+1 will lead to improvements of the 
consistency and compactness of the map. Measure of improvements will be used to 
evaluate the performance of a vaccination operator. In detail, either of both 
trajectories Tj and Tj+1 is evaluated by constructing a local occupancy map using the 
recorded range-finder data of the robot along the path, and a value f1 is calculated 
according to formation (1) within the local occupancy map. If Tj and Tj+1 are replaced 
with T′j and T′j+1, as the same as above calculations, a value f′1 is calculated. If f′1 <f1, 
Tj and Tj+1 are replaced with T′j and T′j+1 in the individual in which the vaccination 
operator has been performed, else, the operator of replacement will be done[13] with 
probability exp(-(f′1 - f1)/ln(k+1)), where k is the evolutionary generation in 
evolutionary process. 
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4   Implementation of the Algorithm and Experiment Results 

The algorithm was tested using data recorded by an AmigoBOT mobile robot 
produced by ActivMedia Robotics, LLC with the addition of a SICK laser scanner 
showed at the Intelligence Control Lab of the Central South University in China. The 
odometer trace was divided into segments of about from 1 to 2 meters in length and 
was 0.2 meters at every key point grid. For the environment of Fig. 4, there were 26 
segments corresponding to the about 30 meters traveled by the robot. Because 
movable scope for robot is not large enough, all range-finder data are truncated such 
that the lengths of range-finder data are less than 3 meters, which means that if ri>3 in 
range-finder data (ri,φi ), ri=3. 

In our experiments Dmax=0.32, δKey =1, dmax=20cm, θmax=10, β0=1meters, integer 
dk∈[-20, 20], integer θk∈[-10, 10]. In implementation of the algorithm the 
population size is 50, pI=0.3, pC =0.9 and pM=0.08. 

The algorithms proposed in this paper and in Reference [7] and [8] run 10 times 
for the same test case (environment, trajectories, and range-finder data) in order to 
prove that the algorithm proposed in this paper outperforms other approaches. 
Running results of algorithms are list in Table 1, and a grid-map gained through the 
algorithm in this paper is shown in Fig. 4, where the terminate condition is that 
running generation is 300. From Table 1 it can be seen that the convergence rate is 
higher than the algorithms in Reference [7]. Similar experiments were conducted for 
the traditional multi-objective algorithm without vaccination operator and immune 
selection operator, the results are shown in table 2, where the terminate condition is if 
the best fitness values in the population are not improved in Nς  =20 generations, the 
algorithm will go to the end, which is often the convergence critical. The table holds 
one column for every algorithm. The first column reports the average total FS of the 
traditional algorithm, while the remaining columns report the performance for the 
multi-objective algorithm. The experiments reveal that the multi-objective algorithm 
with immunity performs better than the traditional algorithm without immunity. 

 

Figure 4.  A grid-map was gotten with proposed algorithm when the robot ran in our 
experiment Lab. 
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In order to compare the accuracy of maps achieved by several algorithms, manual 
build a map using stored data captured by the mobile robot. 

Table 1. Comparisons of running results for two algorithms 

Algorithms Mean value of 
best fitness values 

Standard deviation 
of best fitness values 

MOA with immunity 510.4 22.7 
MOA without immunity 697.3 30.1 

Algorithm in Ref.[7] 631.8 37.5 
Algorithm in Ref.[8] 582.0 29.8 

Table 2. Comparisons of running results for two algorithms 

Algorithms Mean number of fitness 
function evaluations 

MOA with immunity 2074.8 
MOA without 
immunity 3893.6 

In the implementation of the algorithm in this paper, computations of extracting 
line segments and key point grids from range-finder data are carried out only once, 
hence in a vaccination operator and an immune selection, major computation time is 
spent on the computation of values f1 in a local grid-map that was constructed by only 
both of trajectories. The average ratio of the computation time of values f1 in a local 
grid-map to the one in a global grid-map is about 4/N (N is the total of trajectories). 
So, its computation time is more less than computation of the fitness value f in 
formulation (1). To sum up, the algorithm proposed in this paper can increase the 
convergence rate of SLAM based on evolutionary algorithms, and the larger the scope 
is for robot to travel the higher the convergence rate of our algorithm is, since the total 
of trajectories will increase. 

5   Conclusions 

(1)  Multi-objective algorithms with immunity for SLAM have bee proposed, which 
are combined with feature of key point grids in range-finder data in order to 
increase the convergence rate of SLAM based on evolutionary algorithms. 

(2)  The feature of large gap in range-finder data at a convex vertex in polygonal 
obstacle is employed, and the feature of key point grids is extracted and used to 
construct a local search operator of key point grid with immunity.  

(3)  Experiments results showed that multi-objective evolutionary algorithms with 
immunity could improve optimization for SLAM in some cases. 
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